Nuprl Lemma : reqmatrix_wf
∀[a,b:ℕ]. ∀[X,Y:ℝ(a × b)].  (X ≡ Y ∈ ℙ)
Proof
Definitions occuring in Statement : 
reqmatrix: X ≡ Y
, 
rmatrix: ℝ(a × b)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
reqmatrix: X ≡ Y
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
rmatrix: ℝ(a × b)
Lemmas referenced : 
int_seg_wf, 
req_wf, 
rmatrix_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[X,Y:\mBbbR{}(a  \mtimes{}  b)].    (X  \mequiv{}  Y  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-08_12_46
Last ObjectModification:
2019_09_19-AM-10_45_40
Theory : reals
Home
Index