Nuprl Lemma : reqmatrix_wf

[a,b:ℕ]. ∀[X,Y:ℝ(a × b)].  (X ≡ Y ∈ ℙ)


Proof




Definitions occuring in Statement :  reqmatrix: X ≡ Y rmatrix: (a × b) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reqmatrix: X ≡ Y prop: all: x:A. B[x] nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B rmatrix: (a × b)
Lemmas referenced :  int_seg_wf req_wf rmatrix_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis productElimination applyEquality axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[X,Y:\mBbbR{}(a  \mtimes{}  b)].    (X  \mequiv{}  Y  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-08_12_46
Last ObjectModification: 2019_09_19-AM-10_45_40

Theory : reals


Home Index