Nuprl Lemma : rexp_functionality

[x,y:ℝ].  e^x e^y supposing y


Proof




Definitions occuring in Statement :  rexp: e^x req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B nat_plus: + uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  nat: false: False not: ¬A nequal: a ≠ b ∈  int_nzero: -o

Latex:
\mforall{}[x,y:\mBbbR{}].    e\^{}x  =  e\^{}y  supposing  x  =  y



Date html generated: 2020_05_20-AM-11_27_10
Last ObjectModification: 2020_01_06-PM-00_19_29

Theory : reals


Home Index