Step
*
2
1
of Lemma
rinv-limit
.....assertion.....
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - a| ≤ (r1/r(k)))))])
4. ∀n:ℕ. x[n] ≠ r0
5. a ≠ r0
6. ∀n:ℕ. ((|a| - |x[n] - a|) ≤ |x[n]|)
⊢ ∀large(n).{|x[n] - a| < (|a|/r(2))}
BY
{ ((FLemma `rabs-neq-zero` [-2]) THENA Auto) }
1
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - a| ≤ (r1/r(k)))))])
4. ∀n:ℕ. x[n] ≠ r0
5. a ≠ r0
6. ∀n:ℕ. ((|a| - |x[n] - a|) ≤ |x[n]|)
7. r0 < |a|
⊢ ∀large(n).{|x[n] - a| < (|a|/r(2))}
Latex:
Latex:
.....assertion.....
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. a : \mBbbR{}
3. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|x[n] - a| \mleq{} (r1/r(k)))))])
4. \mforall{}n:\mBbbN{}. x[n] \mneq{} r0
5. a \mneq{} r0
6. \mforall{}n:\mBbbN{}. ((|a| - |x[n] - a|) \mleq{} |x[n]|)
\mvdash{} \mforall{}large(n).\{|x[n] - a| < (|a|/r(2))\}
By
Latex:
((FLemma `rabs-neq-zero` [-2]) THENA Auto)
Home
Index