Step
*
2
2
2
2
of Lemma
rinv-limit
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - a| ≤ (r1/r(k)))))])
4. ∀n:ℕ. x[n] ≠ r0
5. a ≠ r0
6. ∀n:ℕ. ((|a| - |x[n] - a|) ≤ |x[n]|)
7. ∀large(n).{|x[n] - a| < (|a|/r(2))}
8. ∀large(n).{(|a|/r(2)) < |x[n]|}
9. k : ℕ+
10. ∀large(n).{|x[n] - a| < (|a| * |a|/r(2 * k))}
⊢ ∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|(r1/x[n]) - (r1/a)| ≤ (r1/r(k)))))]
BY
{ ((FLemma `sq-all-large-and` [-1; -3]) THENA Auto)⋅ }
1
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - a| ≤ (r1/r(k)))))])
4. ∀n:ℕ. x[n] ≠ r0
5. a ≠ r0
6. ∀n:ℕ. ((|a| - |x[n] - a|) ≤ |x[n]|)
7. ∀large(n).{|x[n] - a| < (|a|/r(2))}
8. ∀large(n).{(|a|/r(2)) < |x[n]|}
9. k : ℕ+
10. ∀large(n).{|x[n] - a| < (|a| * |a|/r(2 * k))}
11. ∀large(n).{(|x[n] - a| < (|a| * |a|/r(2 * k))) ∧ ((|a|/r(2)) < |x[n]|)}
⊢ ∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|(r1/x[n]) - (r1/a)| ≤ (r1/r(k)))))]
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. a : \mBbbR{}
3. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|x[n] - a| \mleq{} (r1/r(k)))))])
4. \mforall{}n:\mBbbN{}. x[n] \mneq{} r0
5. a \mneq{} r0
6. \mforall{}n:\mBbbN{}. ((|a| - |x[n] - a|) \mleq{} |x[n]|)
7. \mforall{}large(n).\{|x[n] - a| < (|a|/r(2))\}
8. \mforall{}large(n).\{(|a|/r(2)) < |x[n]|\}
9. k : \mBbbN{}\msupplus{}
10. \mforall{}large(n).\{|x[n] - a| < (|a| * |a|/r(2 * k))\}
\mvdash{} \mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|(r1/x[n]) - (r1/a)| \mleq{} (r1/r(k)))))]
By
Latex:
((FLemma `sq-all-large-and` [-1; -3]) THENA Auto)\mcdot{}
Home
Index