Nuprl Lemma : rinv-positive

x:ℝ((r0 < x)  (r0 < rinv(x)))


Proof




Definitions occuring in Statement :  rless: x < y rinv: rinv(x) int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T rneq: x ≠ y or: P ∨ Q prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q rpositive: rpositive(x) sq_exists: x:A [B[x]] rinv: rinv(x) exists: x:A. B[x] subtype_rel: A ⊆B nat_plus: + int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rless: x < y real: sq_stable: SqStable(P) squash: T decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False has-value: (a)↓ nat: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) less_than: a < b true: True guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b less_than': less_than'(a;b) reg-seq-inv: reg-seq-inv(x) rpositive2: rpositive2(x) nequal: a ≠ b ∈  cand: c∧ B int_nzero: -o ge: i ≥  absval: |i| reg-seq-adjust: reg-seq-adjust(n;x)

Latex:
\mforall{}x:\mBbbR{}.  ((r0  <  x)  {}\mRightarrow{}  (r0  <  rinv(x)))



Date html generated: 2020_05_20-AM-10_57_21
Last ObjectModification: 2020_01_06-PM-00_27_50

Theory : reals


Home Index