Nuprl Lemma : rinv_functionality-tst
∀[x,y:ℝ].  (rnonzero(x) ⇒ (x = y) ⇒ (rinv(x) = rinv(y)))
Proof
Definitions occuring in Statement : 
rinv: rinv(x), 
rnonzero: rnonzero(x), 
req: x = y, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
prop: ℙ, 
real: ℝ, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[x,y:\mBbbR{}].    (rnonzero(x)  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  (rinv(x)  =  rinv(y)))
Date html generated:
2020_05_20-AM-10_53_49
Last ObjectModification:
2020_01_06-PM-00_27_40
Theory : reals
Home
Index