Nuprl Lemma : rinv_functionality-tst
∀[x,y:ℝ].  (rnonzero(x) 
⇒ (x = y) 
⇒ (rinv(x) = rinv(y)))
Proof
Definitions occuring in Statement : 
rinv: rinv(x)
, 
rnonzero: rnonzero(x)
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
prop: ℙ
, 
real: ℝ
, 
rev_implies: P 
⇐ Q
Latex:
\mforall{}[x,y:\mBbbR{}].    (rnonzero(x)  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  (rinv(x)  =  rinv(y)))
Date html generated:
2020_05_20-AM-10_53_49
Last ObjectModification:
2020_01_06-PM-00_27_40
Theory : reals
Home
Index