Step
*
of Lemma
rinv_wf
∀[x:ℝ]. (rnonzero(x)
⇒ (rinv(x) ∈ ℝ))
BY
{ (Auto
THEN (Unfold `rinv` 0 THEN Unfold `rnonzero` -1)
THEN Assert ⌜mu-ge(λn.eval k = x n in 4 <z |k|;1) = mu-ge(λn.4 <z |x n|;1) ∈ {1...}⌝⋅) }
1
.....assertion.....
1. x : ℝ
2. ∃n:ℕ+. 4 < |x n|
⊢ mu-ge(λn.eval k = x n in 4 <z |k|;1) = mu-ge(λn.4 <z |x n|;1) ∈ {1...}
2
1. x : ℝ
2. ∃n:ℕ+. 4 < |x n|
3. mu-ge(λn.eval k = x n in 4 <z |k|;1) = mu-ge(λn.4 <z |x n|;1) ∈ {1...}
⊢ eval n = mu-ge(λn.eval k = x n in
4 <z |k|;1) in
if (n =z 1)
then accelerate(5;reg-seq-inv(x))
else accelerate(4 * ((4 * n * n) + 1);reg-seq-inv(reg-seq-adjust(n;x)))
fi ∈ ℝ
Latex:
Latex:
\mforall{}[x:\mBbbR{}]. (rnonzero(x) {}\mRightarrow{} (rinv(x) \mmember{} \mBbbR{}))
By
Latex:
(Auto
THEN (Unfold `rinv` 0 THEN Unfold `rnonzero` -1)
THEN Assert \mkleeneopen{}mu-ge(\mlambda{}n.eval k = x n in 4 <z |k|;1) = mu-ge(\mlambda{}n.4 <z |x n|;1)\mkleeneclose{}\mcdot{})
Home
Index