Nuprl Lemma : rleq-iff-not-rless
∀[x,y:ℝ].  uiff(y ≤ x;¬(x < y))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rless: x < y
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
rless: x < y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
sq_exists: ∃x:A [B[x]]
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
nat_plus: ℕ+
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(y  \mleq{}  x;\mneg{}(x  <  y))
Date html generated:
2020_05_20-AM-10_56_49
Last ObjectModification:
2020_01_09-PM-01_38_47
Theory : reals
Home
Index