Nuprl Lemma : rleq-iff-not-rless

[x,y:ℝ].  uiff(y ≤ x;¬(x < y))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y real: uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  rless: x < y uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False sq_exists: x:A [B[x]] real: all: x:A. B[x] le: A ≤ B iff: ⇐⇒ Q prop: rev_implies:  Q rleq: x ≤ y rnonneg: rnonneg(x) nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q

Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(y  \mleq{}  x;\mneg{}(x  <  y))



Date html generated: 2020_05_20-AM-10_56_49
Last ObjectModification: 2020_01_09-PM-01_38_47

Theory : reals


Home Index