Step
*
1
of Lemma
rleq-limit
1. x : ℕ ⟶ ℝ
2. y : ℕ ⟶ ℝ
3. a : ℝ
4. b : ℝ
5. lim n→∞.x[n] = a
6. lim n→∞.y[n] = b
7. ∀n:ℕ. (x[n] ≤ y[n])
8. lim n→∞.y[n] - x[n] = b - a
⊢ a ≤ b
BY
{ Assert ⌜∀n:ℕ. ((y[n] - x[n]) = |y[n] - x[n]|)⌝⋅ }
1
.....assertion.....
1. x : ℕ ⟶ ℝ
2. y : ℕ ⟶ ℝ
3. a : ℝ
4. b : ℝ
5. lim n→∞.x[n] = a
6. lim n→∞.y[n] = b
7. ∀n:ℕ. (x[n] ≤ y[n])
8. lim n→∞.y[n] - x[n] = b - a
⊢ ∀n:ℕ. ((y[n] - x[n]) = |y[n] - x[n]|)
2
1. x : ℕ ⟶ ℝ
2. y : ℕ ⟶ ℝ
3. a : ℝ
4. b : ℝ
5. lim n→∞.x[n] = a
6. lim n→∞.y[n] = b
7. ∀n:ℕ. (x[n] ≤ y[n])
8. lim n→∞.y[n] - x[n] = b - a
9. ∀n:ℕ. ((y[n] - x[n]) = |y[n] - x[n]|)
⊢ a ≤ b
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. y : \mBbbN{} {}\mrightarrow{} \mBbbR{}
3. a : \mBbbR{}
4. b : \mBbbR{}
5. lim n\mrightarrow{}\minfty{}.x[n] = a
6. lim n\mrightarrow{}\minfty{}.y[n] = b
7. \mforall{}n:\mBbbN{}. (x[n] \mleq{} y[n])
8. lim n\mrightarrow{}\minfty{}.y[n] - x[n] = b - a
\mvdash{} a \mleq{} b
By
Latex:
Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. ((y[n] - x[n]) = |y[n] - x[n]|)\mkleeneclose{}\mcdot{}
Home
Index