Nuprl Lemma : rless_complement

x,y:ℝ.  (x < y) ⇐⇒ y ≤ x)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y real: all: x:A. B[x] iff: ⇐⇒ Q not: ¬A
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q implies:  Q uimplies: supposing a not: ¬A prop: false: False rev_implies:  Q

Latex:
\mforall{}x,y:\mBbbR{}.    (\mneg{}(x  <  y)  \mLeftarrow{}{}\mRightarrow{}  y  \mleq{}  x)



Date html generated: 2020_05_20-AM-10_56_57
Last ObjectModification: 2020_01_09-PM-01_39_43

Theory : reals


Home Index