Nuprl Lemma : rless_complement
∀x,y:ℝ.  (¬(x < y) 
⇐⇒ y ≤ x)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rless: x < y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
prop: ℙ
, 
false: False
, 
rev_implies: P 
⇐ Q
Latex:
\mforall{}x,y:\mBbbR{}.    (\mneg{}(x  <  y)  \mLeftarrow{}{}\mRightarrow{}  y  \mleq{}  x)
Date html generated:
2020_05_20-AM-10_56_57
Last ObjectModification:
2020_01_09-PM-01_39_43
Theory : reals
Home
Index