Step
*
of Lemma
rmax-limit
∀x,y:ℕ ⟶ ℝ. ∀a,b:ℝ. (lim n→∞.x[n] = a
⇒ lim n→∞.y[n] = b
⇒ lim n→∞.rmax(x[n];y[n]) = rmax(a;b))
BY
{ (Auto
THEN (All (Unfold `converges-to`))
THEN Auto
THEN ∀h:hyp. (((InstHyp [⌜k⌝] h)⋅ THENA Auto') THEN D -1 THEN Thin h)
THEN (InstConcl [⌜imax(N;N1)⌝])⋅
THEN Auto
THEN Try ((BLemma `imax_ub` THEN Auto))
THEN ((FLemma `imax_lb` [-1]) THENA Auto)
THEN ∀h:hyp. (((InstHyp [⌜n⌝] h)⋅ THENA Auto) THEN Thin h) ) }
1
1. x : ℕ ⟶ ℝ
2. y : ℕ ⟶ ℝ
3. a : ℝ
4. b : ℝ
5. k : ℕ+
6. N : ℕ
7. N1 : ℕ
8. n : ℕ
9. imax(N;N1) ≤ n
10. (N ≤ n) ∧ (N1 ≤ n)
11. |x[n] - a| ≤ (r1/r(k))
12. |y[n] - b| ≤ (r1/r(k))
⊢ |rmax(x[n];y[n]) - rmax(a;b)| ≤ (r1/r(k))
Latex:
Latex:
\mforall{}x,y:\mBbbN{} {}\mrightarrow{} \mBbbR{}. \mforall{}a,b:\mBbbR{}. (lim n\mrightarrow{}\minfty{}.x[n] = a {}\mRightarrow{} lim n\mrightarrow{}\minfty{}.y[n] = b {}\mRightarrow{} lim n\mrightarrow{}\minfty{}.rmax(x[n];y[n]) = rmax(a;b))
By
Latex:
(Auto
THEN (All (Unfold `converges-to`))
THEN Auto
THEN \mforall{}h:hyp. (((InstHyp [\mkleeneopen{}k\mkleeneclose{}] h)\mcdot{} THENA Auto') THEN D -1 THEN Thin h)
THEN (InstConcl [\mkleeneopen{}imax(N;N1)\mkleeneclose{}])\mcdot{}
THEN Auto
THEN Try ((BLemma `imax\_ub` THEN Auto))
THEN ((FLemma `imax\_lb` [-1]) THENA Auto)
THEN \mforall{}h:hyp. (((InstHyp [\mkleeneopen{}n\mkleeneclose{}] h)\mcdot{} THENA Auto) THEN Thin h) )
Home
Index