Step
*
of Lemma
rmaximum-constant
No Annotations
∀[n,m:ℤ]. ∀[x:{n..m + 1-} ⟶ ℝ]. ∀[r:ℝ]. rmaximum(n;m;i.x[i]) = r supposing ∀i:{n..m + 1-}. (x[i] = r) supposing n ≤ m
BY
{ (Auto
THEN RepeatFor 3 (MoveToConcl (-1))
THEN Unfold `rmaximum` 0
THEN (GenConcl ⌜(m - n) = d ∈ ℕ⌝⋅ THENA Auto')
THEN (Subst ⌜m ~ n + d⌝ 0⋅ THENL [Auto'; (ThinVar `m' THEN (NatInd (-1)) THEN Reduce 0)])) }
1
1. n : ℤ
2. d : ℤ
⊢ ∀x:{n..(n + 0) + 1-} ⟶ ℝ. ∀r:ℝ. ((∀i:{n..(n + 0) + 1-}. (x[i] = r))
⇒ (x[n] = r))
2
.....upcase.....
1. n : ℤ
2. d : ℤ
3. 0 < d
4. ∀x:{n..(n + (d - 1)) + 1-} ⟶ ℝ. ∀r:ℝ.
((∀i:{n..(n + (d - 1)) + 1-}. (x[i] = r))
⇒ (primrec(d - 1;x[n];λi,s. rmax(s;x[n + i + 1])) = r))
⊢ ∀x:{n..(n + d) + 1-} ⟶ ℝ. ∀r:ℝ. ((∀i:{n..(n + d) + 1-}. (x[i] = r))
⇒ (primrec(d;x[n];λi,s. rmax(s;x[n + i + 1])) =\000C r))
Latex:
Latex:
No Annotations
\mforall{}[n,m:\mBbbZ{}].
\mforall{}[x:\{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}]. \mforall{}[r:\mBbbR{}]. rmaximum(n;m;i.x[i]) = r supposing \mforall{}i:\{n..m + 1\msupminus{}\}. (x[i] = r)
supposing n \mleq{} m
By
Latex:
(Auto
THEN RepeatFor 3 (MoveToConcl (-1))
THEN Unfold `rmaximum` 0
THEN (GenConcl \mkleeneopen{}(m - n) = d\mkleeneclose{}\mcdot{} THENA Auto')
THEN (Subst \mkleeneopen{}m \msim{} n + d\mkleeneclose{} 0\mcdot{} THENL [Auto'; (ThinVar `m' THEN (NatInd (-1)) THEN Reduce 0)]))
Home
Index