Nuprl Lemma : rmin-req2
∀[x,y:ℝ].  rmin(x;y) = x supposing x ≤ y
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rmin: rmin(x;y), 
req: x = y, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
implies: P ⇒ Q, 
prop: ℙ
Latex:
\mforall{}[x,y:\mBbbR{}].    rmin(x;y)  =  x  supposing  x  \mleq{}  y
Date html generated:
2020_05_20-AM-10_58_14
Last ObjectModification:
2020_01_02-PM-02_13_28
Theory : reals
Home
Index