Nuprl Lemma : rmin_functionality_wrt_rleq
∀[x1,x2,y1,y2:ℝ].  (rmin(x1;y1) ≤ rmin(x2;y2)) supposing ((y1 ≤ y2) and (x1 ≤ x2))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmin: rmin(x;y)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
guard: {T}
, 
prop: ℙ
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rleq_transitivity, 
rmin-rleq, 
real_wf, 
rleq_wf, 
le_witness_for_triv, 
rmin_wf, 
rmin_ub
Rules used in proof : 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
inhabitedIsType, 
functionIsTypeImplies, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
lambdaEquality_alt, 
sqequalRule, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x1,x2,y1,y2:\mBbbR{}].    (rmin(x1;y1)  \mleq{}  rmin(x2;y2))  supposing  ((y1  \mleq{}  y2)  and  (x1  \mleq{}  x2))
Date html generated:
2019_11_06-PM-00_27_27
Last ObjectModification:
2019_11_05-PM-00_09_00
Theory : reals
Home
Index