Nuprl Lemma : rmin_functionality_wrt_rleq

[x1,x2,y1,y2:ℝ].  (rmin(x1;y1) ≤ rmin(x2;y2)) supposing ((y1 ≤ y2) and (x1 ≤ x2))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmin: rmin(x;y) real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  guard: {T} prop: le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y cand: c∧ B implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rleq_transitivity rmin-rleq real_wf rleq_wf le_witness_for_triv rmin_wf rmin_ub
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt universeIsType inhabitedIsType functionIsTypeImplies independent_isectElimination equalitySymmetry equalityTransitivity lambdaEquality_alt sqequalRule independent_pairFormation independent_functionElimination productElimination hypothesis isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x1,x2,y1,y2:\mBbbR{}].    (rmin(x1;y1)  \mleq{}  rmin(x2;y2))  supposing  ((y1  \mleq{}  y2)  and  (x1  \mleq{}  x2))



Date html generated: 2019_11_06-PM-00_27_27
Last ObjectModification: 2019_11_05-PM-00_09_00

Theory : reals


Home Index