Nuprl Lemma : rminimum-cases

n,m:ℤ.
  ∀x:{n..m 1-} ⟶ ℝ(¬¬(∃a:{n..m 1-}. ((rminimum(n;m;i.x[i]) x[a]) ∧ (∀j:{n..m 1-}. (x[a] ≤ x[j]))))) 
  supposing n ≤ m


Proof




Definitions occuring in Statement :  rminimum: rminimum(n;m;k.x[k]) rleq: x ≤ y req: y real: int_seg: {i..j-} uimplies: supposing a so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False uall: [x:A]. B[x] rminimum: rminimum(n;m;k.x[k]) nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: guard: {T} ge: i ≥  sq_type: SQType(T) so_lambda: λ2x.t[x] squash: T less_than: a < b so_apply: x[s] cand: c∧ B top: Top lelt: i ≤ j < k int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than': less_than'(a;b) true: True rless: x < y sq_exists: x:A [B[x]] nat_plus: + real: sq_stable: SqStable(P) stable: Stable{P} rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y

Latex:
\mforall{}n,m:\mBbbZ{}.
    \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}
        (\mneg{}\mneg{}(\mexists{}a:\{n..m  +  1\msupminus{}\}.  ((rminimum(n;m;i.x[i])  =  x[a])  \mwedge{}  (\mforall{}j:\{n..m  +  1\msupminus{}\}.  (x[a]  \mleq{}  x[j]))))) 
    supposing  n  \mleq{}  m



Date html generated: 2020_05_20-AM-11_15_15
Last ObjectModification: 2020_01_06-PM-01_15_48

Theory : reals


Home Index