Nuprl Lemma : rminimum-select
∀n,m:ℤ. ∀x:{n..m + 1-} ⟶ ℝ. ∀e:ℝ. ((r0 < e)
⇒ (∃i:{n..m + 1-}. (x[i] < (rminimum(n;m;i.x[i]) + e)))) supposing n ≤ m
Proof
Definitions occuring in Statement :
rminimum: rminimum(n;m;k.x[k])
,
rless: x < y
,
radd: a + b
,
int-to-real: r(n)
,
real: ℝ
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
so_apply: x[s]
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
and: P ∧ Q
,
rminimum: rminimum(n;m;k.x[k])
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
prop: ℙ
,
guard: {T}
,
ge: i ≥ j
,
sq_type: SQType(T)
,
so_apply: x[s]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
less_than: a < b
,
squash: ↓T
,
rless: x < y
,
sq_exists: ∃x:A [B[x]]
,
nat_plus: ℕ+
,
so_lambda: λ2x.t[x]
,
uiff: uiff(P;Q)
,
top: Top
,
sq_stable: SqStable(P)
,
real: ℝ
,
subtype_rel: A ⊆r B
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
cand: A c∧ B
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtract: n - m
,
less_than': less_than'(a;b)
,
true: True
,
req_int_terms: t1 ≡ t2
,
rge: x ≥ y
Latex:
\mforall{}n,m:\mBbbZ{}.
\mforall{}x:\{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}. \mforall{}e:\mBbbR{}. ((r0 < e) {}\mRightarrow{} (\mexists{}i:\{n..m + 1\msupminus{}\}. (x[i] < (rminimum(n;m;i.x[i]) + e))))
supposing n \mleq{} m
Date html generated:
2020_05_20-AM-11_15_33
Last ObjectModification:
2020_01_06-PM-00_53_36
Theory : reals
Home
Index