Nuprl Lemma : rminimum-split

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ]. ∀[k:ℤ].
  (rminimum(n;m;i.x[i]) rmin(rminimum(n;k;i.x[i]);rminimum(k 1;m;i.x[i]))) supposing (k < and (n ≤ k))


Proof




Definitions occuring in Statement :  rminimum: rminimum(n;m;k.x[k]) rmin: rmin(x;y) req: y real: int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rminimum: rminimum(n;m;k.x[k]) nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: guard: {T} ge: i ≥  sq_type: SQType(T) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T less_than': less_than'(a;b) top: Top cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[k:\mBbbZ{}].
    (rminimum(n;m;i.x[i])  =  rmin(rminimum(n;k;i.x[i]);rminimum(k  +  1;m;i.x[i])))  supposing 
          (k  <  m  and 
          (n  \mleq{}  k))



Date html generated: 2020_05_20-AM-11_14_57
Last ObjectModification: 2019_12_14-PM-00_55_31

Theory : reals


Home Index