Nuprl Lemma : rminus-neq-zero

x:ℝ(x ≠ r0  -(x) ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rminus: -(x) int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q not: ¬A uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False

Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  -(x)  \mneq{}  r0)



Date html generated: 2020_05_20-AM-10_57_30
Last ObjectModification: 2020_01_09-PM-04_36_01

Theory : reals


Home Index