Nuprl Lemma : rmul-zero-both

[x:ℝ]. (((x r0) r0) ∧ ((r0 x) r0))


Proof




Definitions occuring in Statement :  req: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B implies:  Q uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rmul-zero req_witness rmul_wf int-to-real_wf real_wf req_functionality rmul_comm req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation sqequalRule productElimination independent_pairEquality natural_numberEquality independent_functionElimination because_Cache independent_isectElimination

Latex:
\mforall{}[x:\mBbbR{}].  (((x  *  r0)  =  r0)  \mwedge{}  ((r0  *  x)  =  r0))



Date html generated: 2016_05_18-AM-06_52_05
Last ObjectModification: 2015_12_28-AM-00_30_25

Theory : reals


Home Index