Nuprl Lemma : rmul-zero-both
∀[x:ℝ]. (((x * r0) = r0) ∧ ((r0 * x) = r0))
Proof
Definitions occuring in Statement : 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rmul-zero, 
req_witness, 
rmul_wf, 
int-to-real_wf, 
real_wf, 
req_functionality, 
rmul_comm, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
natural_numberEquality, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}[x:\mBbbR{}].  (((x  *  r0)  =  r0)  \mwedge{}  ((r0  *  x)  =  r0))
Date html generated:
2016_05_18-AM-06_52_05
Last ObjectModification:
2015_12_28-AM-00_30_25
Theory : reals
Home
Index