Nuprl Lemma : rn-prod-metric_wf

[n:ℕ]. (rn-prod-metric(n) ∈ metric(ℝ^n))


Proof




Definitions occuring in Statement :  rn-prod-metric: rn-prod-metric(n) real-vec: ^n metric: metric(X) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  real-vec: ^n uall: [x:A]. B[x] member: t ∈ T rn-prod-metric: rn-prod-metric(n) so_lambda: λ2x.t[x] nat: so_apply: x[s]
Lemmas referenced :  prod-metric_wf real_wf int_seg_wf rmetric_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality_alt hypothesis universeIsType natural_numberEquality setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (rn-prod-metric(n)  \mmember{}  metric(\mBbbR{}\^{}n))



Date html generated: 2019_10_30-AM-08_33_10
Last ObjectModification: 2019_10_02-AM-11_00_47

Theory : reals


Home Index