Nuprl Lemma : rn-prod-metric_wf
∀[n:ℕ]. (rn-prod-metric(n) ∈ metric(ℝ^n))
Proof
Definitions occuring in Statement : 
rn-prod-metric: rn-prod-metric(n)
, 
real-vec: ℝ^n
, 
metric: metric(X)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rn-prod-metric: rn-prod-metric(n)
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
prod-metric_wf, 
real_wf, 
int_seg_wf, 
rmetric_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
hypothesis, 
universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (rn-prod-metric(n)  \mmember{}  metric(\mBbbR{}\^{}n))
Date html generated:
2019_10_30-AM-08_33_10
Last ObjectModification:
2019_10_02-AM-11_00_47
Theory : reals
Home
Index