Nuprl Lemma : rneq-cases
∀x,y:ℝ.  (x ≠ y 
⇒ (∀z:ℝ. (x ≠ z ∨ y ≠ z)))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
Lemmas referenced : 
real_wf, 
rneq_wf, 
rless-cases, 
rless_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
inlFormation, 
sqequalRule, 
inrFormation
Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mneq{}  y  {}\mRightarrow{}  (\mforall{}z:\mBbbR{}.  (x  \mneq{}  z  \mvee{}  y  \mneq{}  z)))
Date html generated:
2016_10_26-AM-09_11_38
Last ObjectModification:
2016_10_14-PM-05_49_18
Theory : reals
Home
Index