Nuprl Lemma : rneq-cases

x,y:ℝ.  (x ≠  (∀z:ℝ(x ≠ z ∨ y ≠ z)))


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T prop: uall: [x:A]. B[x] guard: {T}
Lemmas referenced :  real_wf rneq_wf rless-cases rless_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin cut introduction extract_by_obid hypothesis isectElimination hypothesisEquality dependent_functionElimination independent_functionElimination inlFormation sqequalRule inrFormation

Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mneq{}  y  {}\mRightarrow{}  (\mforall{}z:\mBbbR{}.  (x  \mneq{}  z  \mvee{}  y  \mneq{}  z)))



Date html generated: 2016_10_26-AM-09_11_38
Last ObjectModification: 2016_10_14-PM-05_49_18

Theory : reals


Home Index