Nuprl Lemma : rneq_irreflexivity
∀[e:ℝ]. False supposing e ≠ e
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
false: False
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
false: False
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
prop: ℙ
Lemmas referenced : 
rless_irreflexivity, 
rneq_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
voidElimination, 
because_Cache, 
sqequalRule, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[e:\mBbbR{}].  False  supposing  e  \mneq{}  e
Date html generated:
2016_05_18-AM-07_10_47
Last ObjectModification:
2015_12_28-AM-00_39_09
Theory : reals
Home
Index