Nuprl Lemma : rneq_irreflexivity

[e:ℝ]. False supposing e ≠ e


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: uimplies: supposing a uall: [x:A]. B[x] false: False
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a false: False rneq: x ≠ y or: P ∨ Q prop:
Lemmas referenced :  rless_irreflexivity rneq_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin lemma_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis voidElimination because_Cache sqequalRule isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[e:\mBbbR{}].  False  supposing  e  \mneq{}  e



Date html generated: 2016_05_18-AM-07_10_47
Last ObjectModification: 2015_12_28-AM-00_39_09

Theory : reals


Home Index