Nuprl Lemma : rnexp-converges

x:ℝ((|x| < r1)  lim n→∞.x^n r0)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rless: x < y rabs: |x| rnexp: x^k1 int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  rdiv: (x/y) true: True less_than': less_than'(a;b) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 itermConstant: "const" le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y squash: T sq_stable: SqStable(P) real: subtype_rel: A ⊆B top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) guard: {T} rneq: x ≠ y uimplies: supposing a nat_plus: + sq_exists: x:A [B[x]] rless: x < y rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) and: P ∧ Q exists: x:A. B[x] prop: uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] int_upper: {i...} nat: converges-to: lim n→∞.x[n] y ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y less_than: a < b

Latex:
\mforall{}x:\mBbbR{}.  ((|x|  <  r1)  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x\^{}n  =  r0)



Date html generated: 2020_05_20-AM-11_09_29
Last ObjectModification: 2020_03_20-PM-01_24_22

Theory : reals


Home Index