Nuprl Lemma : rnexp-even-nonneg
∀n:ℕ. (((n rem 2) = 0 ∈ ℤ)
⇒ (∀x:ℝ. (r0 ≤ x^n)))
Proof
Definitions occuring in Statement :
rleq: x ≤ y
,
rnexp: x^k1
,
int-to-real: r(n)
,
real: ℝ
,
nat: ℕ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
remainder: n rem m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
guard: {T}
,
subtype_rel: A ⊆r B
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
or: P ∨ Q
,
decidable: Dec(P)
,
ge: i ≥ j
,
prop: ℙ
,
false: False
,
not: ¬A
,
nequal: a ≠ b ∈ T
,
true: True
,
int_nzero: ℤ-o
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
nat_plus: ℕ+
,
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}n:\mBbbN{}. (((n rem 2) = 0) {}\mRightarrow{} (\mforall{}x:\mBbbR{}. (r0 \mleq{} x\^{}n)))
Date html generated:
2020_05_20-AM-10_59_13
Last ObjectModification:
2020_01_03-AM-11_17_33
Theory : reals
Home
Index