Nuprl Lemma : rnexp-even-nonneg

n:ℕ(((n rem 2) 0 ∈ ℤ (∀x:ℝ(r0 ≤ x^n)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rnexp: x^k1 int-to-real: r(n) real: nat: all: x:A. B[x] implies:  Q remainder: rem m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) and: P ∧ Q uiff: uiff(P;Q) or: P ∨ Q decidable: Dec(P) ge: i ≥  prop: false: False not: ¬A nequal: a ≠ b ∈  true: True int_nzero: -o le: A ≤ B less_than': less_than'(a;b) nat_plus: + rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}n:\mBbbN{}.  (((n  rem  2)  =  0)  {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  (r0  \mleq{}  x\^{}n)))



Date html generated: 2020_05_20-AM-10_59_13
Last ObjectModification: 2020_01_03-AM-11_17_33

Theory : reals


Home Index