Nuprl Lemma : rnexp-rmul

[n:ℕ]. ∀[x,y:ℝ].  (x y^n (x^n y^n))


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y rmul: b real: nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈ 

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}].    (x  *  y\^{}n  =  (x\^{}n  *  y\^{}n))



Date html generated: 2020_05_20-AM-11_00_32
Last ObjectModification: 2020_01_06-PM-00_29_31

Theory : reals


Home Index