Nuprl Lemma : rnexp2-positive-iff

x:ℝ(r0 < x^2 ⇐⇒ x ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rless: x < y rnexp: x^k1 int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False prop: rev_implies:  Q nat_plus: + rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]

Latex:
\mforall{}x:\mBbbR{}.  (r0  <  x\^{}2  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  r0)



Date html generated: 2020_05_20-AM-11_07_56
Last ObjectModification: 2020_01_06-PM-00_26_12

Theory : reals


Home Index