Nuprl Lemma : rnexp_functionality

[n:ℕ]. ∀[x,y:ℝ].  x^n y^n supposing y


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y real: nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈  stable: Stable{P}

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}].    x\^{}n  =  y\^{}n  supposing  x  =  y



Date html generated: 2020_05_20-AM-10_58_43
Last ObjectModification: 2020_01_06-PM-00_45_06

Theory : reals


Home Index