Step
*
2
1
1
of Lemma
rpolydiv-rec
1. n : ℤ
2. a : Top
3. z : Top
4. i : ℕn - 1
⊢ Ax ∈ primrec(n - 1 - i;a n;λj,r. ((a (n - j + 1)) + (z * r))) ~ (a (i + 1))
+ (z * primrec(n - 1 - i + 1;a n;λj,r. ((a (n - j + 1)) + (z * r))))
BY
{ ((RW (AddrC [1;1] (LemmaC `primrec-unroll`)) 0 THENA Auto) THEN Reduce 0 THEN AutoSplit) }
Latex:
Latex:
1. n : \mBbbZ{}
2. a : Top
3. z : Top
4. i : \mBbbN{}n - 1
\mvdash{} Ax \mmember{} primrec(n - 1 - i;a n;\mlambda{}j,r. ((a (n - j + 1)) + (z * r))) \msim{} (a (i + 1))
+ (z * primrec(n - 1 - i + 1;a n;\mlambda{}j,r. ((a (n - j + 1)) + (z * r))))
By
Latex:
((RW (AddrC [1;1] (LemmaC `primrec-unroll`)) 0 THENA Auto) THEN Reduce 0 THEN AutoSplit)
Home
Index