Nuprl Lemma : rpower-one
∀[x:ℝ]. (x^1 = x)
Proof
Definitions occuring in Statement : 
rnexp: x^k1
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
rnexp1, 
req_witness, 
rnexp_wf, 
false_wf, 
le_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
independent_functionElimination
Latex:
\mforall{}[x:\mBbbR{}].  (x\^{}1  =  x)
Date html generated:
2016_05_18-AM-07_20_12
Last ObjectModification:
2015_12_28-AM-00_47_31
Theory : reals
Home
Index