Nuprl Lemma : rpower-one

[x:ℝ]. (x^1 x)


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  rnexp1 req_witness rnexp_wf false_wf le_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation independent_functionElimination

Latex:
\mforall{}[x:\mBbbR{}].  (x\^{}1  =  x)



Date html generated: 2016_05_18-AM-07_20_12
Last ObjectModification: 2015_12_28-AM-00_47_31

Theory : reals


Home Index