Nuprl Lemma : rnexp_wf

[k:ℕ]. ∀[x:ℝ].  (x^k ∈ ℝ)


Proof




Definitions occuring in Statement :  rnexp: x^k1 real: nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rnexp: x^k1 has-value: (a)↓ uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q not: ¬A false: False bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b real: subtype_rel: A ⊆B nat_plus: + int_upper: {i...} prop: reg-seq-nexp: reg-seq-nexp(x;k) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top le: A ≤ B less_than': less_than'(a;b) nequal: a ≠ b ∈ 
Lemmas referenced :  value-type-has-value nat_wf set-value-type le_wf istype-int int-value-type decidable__equal_int subtype_base_sq int_subtype_base int-to-real_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_wf nat_plus_wf absval_wf istype-int_upper canon-bnd_wf reg-seq-nexp_wf nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-less_than accelerate_wf real_wf istype-nat subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma istype-le exp_wf4 subtype_rel_set upper_subtype_nat istype-false exp_wf_nat_plus nat_plus_properties add_nat_plus multiply_nat_wf add_nat_wf divide_wf add-is-int-iff multiply-is-int-iff itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma false_wf exp-fastexp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination intEquality lambdaEquality_alt natural_numberEquality hypothesisEquality dependent_functionElimination setElimination rename unionElimination instantiate cumulativity because_Cache independent_functionElimination inhabitedIsType lambdaFormation_alt equalityElimination equalityTransitivity equalitySymmetry productElimination voidElimination dependent_pairFormation_alt equalityIstype promote_hyp setEquality functionEquality applyEquality multiplyEquality dependent_set_memberEquality_alt approximateComputation int_eqEquality isect_memberEquality_alt independent_pairFormation universeIsType axiomEquality isectIsTypeImplies applyLambdaEquality addEquality divideEquality baseClosed sqequalBase pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbR{}].    (x\^{}k  \mmember{}  \mBbbR{})



Date html generated: 2019_10_29-AM-09_34_02
Last ObjectModification: 2019_01_31-PM-08_16_15

Theory : reals


Home Index