Step
*
of Lemma
rnexp_wf
∀[k:ℕ]. ∀[x:ℝ]. (x^k ∈ ℝ)
BY
{ ((Auto THEN Unfold `rnexp` 0)
THEN (CallByValueReduce 0 THENA Auto)
THEN ((CaseNat 0 `k' THEN Reduce 0) THENL [Auto; (OReduce 0 THENA Auto)])
THEN (CallByValueReduce 0 THENA Auto)
THEN Fold `reg-seq-nexp` 0
THEN (GenConclTerm ⌜reg-seq-nexp(x;k)⌝⋅ THENA Auto)
THEN MemCD
THEN Try (Trivial)) }
1
.....subterm..... T:t
1:n
1. k : ℕ
2. x : ℝ
3. ¬(k = 0 ∈ ℤ)
4. v : {f:ℕ+ ⟶ ℤ| (k * ((canon-bnd(x)^k - 1 ÷ 2^k - 1) + 1)) + 1-regular-seq(f)}
5. reg-seq-nexp(x;k) = v ∈ {f:ℕ+ ⟶ ℤ| (k * ((canon-bnd(x)^k - 1 ÷ 2^k - 1) + 1)) + 1-regular-seq(f)}
⊢ (k * ((canon-bnd(x)^k - 1 ÷ 2^k - 1) + 1)) + 1 ∈ ℕ+
Latex:
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[x:\mBbbR{}]. (x\^{}k \mmember{} \mBbbR{})
By
Latex:
((Auto THEN Unfold `rnexp` 0)
THEN (CallByValueReduce 0 THENA Auto)
THEN ((CaseNat 0 `k' THEN Reduce 0) THENL [Auto; (OReduce 0 THENA Auto)])
THEN (CallByValueReduce 0 THENA Auto)
THEN Fold `reg-seq-nexp` 0
THEN (GenConclTerm \mkleeneopen{}reg-seq-nexp(x;k)\mkleeneclose{}\mcdot{} THENA Auto)
THEN MemCD
THEN Try (Trivial))
Home
Index