Nuprl Lemma : multiply-is-int-iff
∀[a,b:Base]. uiff(a * b ∈ ℤ;(a ∈ ℤ) ∧ (b ∈ ℤ))
Proof
Definitions occuring in Statement :
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
member: t ∈ T
,
multiply: n * m
,
int: ℤ
,
base: Base
Definitions unfolded in proof :
prop: ℙ
,
uimplies: b supposing a
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
equal-wf-base,
base_wf
Rules used in proof :
isect_memberEquality,
productEquality,
because_Cache,
hypothesisEquality,
baseClosed,
closedConclusion,
baseApply,
intEquality,
isectElimination,
lemma_by_obid,
equalitySymmetry,
hypothesis,
equalityTransitivity,
axiomEquality,
independent_pairEquality,
thin,
productElimination,
sqequalHypSubstitution,
sqequalRule,
independent_pairFormation,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
callbyvalueMultiply,
callbyvalueInt,
multiplyEquality
Latex:
\mforall{}[a,b:Base]. uiff(a * b \mmember{} \mBbbZ{};(a \mmember{} \mBbbZ{}) \mwedge{} (b \mmember{} \mBbbZ{}))
Date html generated:
2019_06_20-AM-11_21_56
Last ObjectModification:
2018_10_15-PM-03_40_02
Theory : arithmetic
Home
Index