Nuprl Lemma : add_nat_plus

[i:ℕ]. ∀[j:ℕ+].  (i j ∈ ℕ+)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T add: m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + nat: prop: all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a top: Top subtract: m ge: i ≥  subtype_rel: A ⊆B le: A ≤ B less_than: a < b squash: T less_than': less_than'(a;b) true: True implies:  Q not: ¬A false: False decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  decidable__lt nat_properties nat_plus_properties mul-swap mul-associates mul-commutes omega-shadow minus-zero minus-one-mul-top not-lt-2 add-zero zero-mul mul-distributes-right add-commutes two-mul add-mul-special one-mul zero-add minus-one-mul add-associates le_reflexive subtract_wf add_functionality_wrt_le less-iff-le nat_wf nat_plus_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality addEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality lemma_by_obid isectElimination natural_numberEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache dependent_functionElimination productElimination independent_isectElimination multiplyEquality voidElimination voidEquality minusEquality applyEquality lambdaEquality intEquality independent_pairFormation imageMemberEquality baseClosed independent_functionElimination unionElimination

Latex:
\mforall{}[i:\mBbbN{}].  \mforall{}[j:\mBbbN{}\msupplus{}].    (i  +  j  \mmember{}  \mBbbN{}\msupplus{})



Date html generated: 2016_05_13-PM-03_39_23
Last ObjectModification: 2016_01_14-PM-06_38_31

Theory : arithmetic


Home Index