Step
*
of Lemma
rpowers-converge-ext
∀x:ℝ. (((|x| < r1)
⇒ lim n→∞.x^n = r0) ∧ ((r1 < x)
⇒ lim n →∞.x^n = ∞))
BY
{ Extract of Obid: rpowers-converge
not unfolding divide absval rlessw rdiv radd rmul exp-ratio mu
finishing with (Reduce 0 THEN Auto)
normalizes to:
λx.<λ%.eval x1 = rlessw(λn.|x n|;λk.(2 * k * 1)) in
λk.exp-ratio(|x x1| + (2 * x1 * 1);4 * x1;0;k;1)
, λ%,k. <((||((λk@0.(2 * k@0 * k)) + (λn.(-(2 * n * 1)))/(x + (λn.(-(2 * n * 1)))/λk.(2 * k * 2))) 1|| + 4) ÷ 2)
+ 1
, λn,%15,n. <λv.Ax, Ax, Ax>
>
> }
Latex:
Latex:
\mforall{}x:\mBbbR{}. (((|x| < r1) {}\mRightarrow{} lim n\mrightarrow{}\minfty{}.x\^{}n = r0) \mwedge{} ((r1 < x) {}\mRightarrow{} lim n \mrightarrow{}\minfty{}.x\^{}n = \minfty{}))
By
Latex:
Extract of Obid: rpowers-converge
not unfolding divide absval rlessw rdiv radd rmul exp-ratio mu
finishing with (Reduce 0 THEN Auto)
normalizes to:
\mlambda{}x.<\mlambda{}\%.eval x1 = rlessw(\mlambda{}n.|x n|;\mlambda{}k.(2 * k * 1)) in
\mlambda{}k.exp-ratio(|x x1| + (2 * x1 * 1);4 * x1;0;k;1)
, \mlambda{}\%,k. <((||((\mlambda{}k@0.(2 * k@0 * k)) + (\mlambda{}n.(-(2 * n * 1)))/(x
+ (\mlambda{}n.(-(2 * n * 1)))/\mlambda{}k.(2 * k * 2)))
1||
+ 4) \mdiv{} 2)
+ 1
, \mlambda{}n,\%15,n. <\mlambda{}v.Ax, Ax, Ax>
>
>
Home
Index