Nuprl Lemma : rrange_wf

[I:Interval]. ∀[f:I ⟶ℝ].  (f[x](x∈I) ∈ Set(ℝ))


Proof




Definitions occuring in Statement :  rrange: f[x](x∈I) rfun: I ⟶ℝ interval: Interval rset: Set(ℝ) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T
Definitions unfolded in proof :  rset: Set(ℝ) uall: [x:A]. B[x] member: t ∈ T rrange: f[x](x∈I) all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q cand: c∧ B guard: {T} so_apply: x[s] rfun: I ⟶ℝ prop: uimplies: supposing a so_lambda: λ2x.t[x]
Lemmas referenced :  req_transitivity i-member_wf req_wf real_wf all_wf rfun_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_set_memberEquality because_Cache lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality hypothesis independent_pairFormation lemma_by_obid isectElimination applyEquality independent_isectElimination productEquality lambdaEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (f[x](x\mmember{}I)  \mmember{}  Set(\mBbbR{}))



Date html generated: 2016_05_18-AM-09_08_16
Last ObjectModification: 2015_12_27-PM-11_31_23

Theory : reals


Home Index