Nuprl Lemma : rroot-odd-2-regular
∀i:{2...}. ∀x:ℝ. 2-regular-seq(rroot-odd(i;x))
Proof
Definitions occuring in Statement :
rroot-odd: rroot-odd(i;x)
,
real: ℝ
,
regular-int-seq: k-regular-seq(f)
,
int_upper: {i...}
,
all: ∀x:A. B[x]
,
natural_number: $n
Definitions unfolded in proof :
has-value: (a)↓
,
sq_type: SQType(T)
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
less_than': less_than'(a;b)
,
le: A ≤ B
,
nat: ℕ
,
rroot-odd: rroot-odd(i;x)
,
rroot-abs: rroot-abs(i;x)
,
regular-int-seq: k-regular-seq(f)
,
rev_implies: P
⇐ Q
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
guard: {T}
,
subtype_rel: A ⊆r B
,
true: True
,
squash: ↓T
,
sq_stable: SqStable(P)
,
false: False
,
prop: ℙ
,
top: Top
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
uimplies: b supposing a
,
or: P ∨ Q
,
decidable: Dec(P)
,
int_upper: {i...}
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
real: ℝ
,
implies: P
⇒ Q
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
ge: i ≥ j
,
assert: ↑b
,
bnot: ¬bb
,
bfalse: ff
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
btrue: tt
,
it: ⋅
,
unit: Unit
,
bool: 𝔹
,
less_than: a < b
,
subtract: n - m
,
cand: A c∧ B
,
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}i:\{2...\}. \mforall{}x:\mBbbR{}. 2-regular-seq(rroot-odd(i;x))
Date html generated:
2020_05_20-PM-00_30_38
Last ObjectModification:
2020_03_20-AM-11_01_25
Theory : reals
Home
Index