Nuprl Lemma : rsqrt-is-one
∀[x:ℝ]. uiff((r0 ≤ x) ∧ (rsqrt(x) = r1);x = r1)
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rleq: x ≤ y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
nat: ℕ
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[x:\mBbbR{}].  uiff((r0  \mleq{}  x)  \mwedge{}  (rsqrt(x)  =  r1);x  =  r1)
Date html generated:
2020_05_20-PM-00_32_08
Last ObjectModification:
2019_12_14-PM-03_08_05
Theory : reals
Home
Index