Nuprl Lemma : rsqrt-is-one

[x:ℝ]. uiff((r0 ≤ x) ∧ (rsqrt(x) r1);x r1)


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y req: y int-to-real: r(n) real: uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] prop: subtype_rel: A ⊆B implies:  Q iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A nat: squash: T true: True guard: {T} rleq: x ≤ y rnonneg: rnonneg(x) rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[x:\mBbbR{}].  uiff((r0  \mleq{}  x)  \mwedge{}  (rsqrt(x)  =  r1);x  =  r1)



Date html generated: 2020_05_20-PM-00_32_08
Last ObjectModification: 2019_12_14-PM-03_08_05

Theory : reals


Home Index