Step
*
2
1
2
2
2
1
of Lemma
rsqrt2-repels-rationals
1. n : ℕ+
2. m : ℤ
3. (|(r(n) * rsqrt(r(2))) - r(m)| * |(r(n) * rsqrt(r(2))) + r(m)|) = |r((2 * n * n) - m * m)|
4. n ≤ m
5. ¬((2 * m) ≤ (3 * n))
6. ¬(m = 1 ∈ ℤ)
7. ¬(n = 1 ∈ ℤ)
8. 12 ≤ (3 * n * n)
9. (r1/r(3 * n * n)) ≤ (r1/r(12))
⊢ (r1/r(12)) ≤ |rsqrt(r(2)) - (r(m)/r(n))|
BY
{ (Assert (r(3)/r(2)) ≤ (r(m)/r(n)) BY
Auto) }
1
1. n : ℕ+
2. m : ℤ
3. (|(r(n) * rsqrt(r(2))) - r(m)| * |(r(n) * rsqrt(r(2))) + r(m)|) = |r((2 * n * n) - m * m)|
4. n ≤ m
5. ¬((2 * m) ≤ (3 * n))
6. ¬(m = 1 ∈ ℤ)
7. ¬(n = 1 ∈ ℤ)
8. 12 ≤ (3 * n * n)
9. (r1/r(3 * n * n)) ≤ (r1/r(12))
10. (r(3)/r(2)) ≤ (r(m)/r(n))
⊢ (r1/r(12)) ≤ |rsqrt(r(2)) - (r(m)/r(n))|
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. m : \mBbbZ{}
3. (|(r(n) * rsqrt(r(2))) - r(m)| * |(r(n) * rsqrt(r(2))) + r(m)|) = |r((2 * n * n) - m * m)|
4. n \mleq{} m
5. \mneg{}((2 * m) \mleq{} (3 * n))
6. \mneg{}(m = 1)
7. \mneg{}(n = 1)
8. 12 \mleq{} (3 * n * n)
9. (r1/r(3 * n * n)) \mleq{} (r1/r(12))
\mvdash{} (r1/r(12)) \mleq{} |rsqrt(r(2)) - (r(m)/r(n))|
By
Latex:
(Assert (r(3)/r(2)) \mleq{} (r(m)/r(n)) BY
Auto)
Home
Index