Nuprl Lemma : rsum'-rsum

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].  {x[k] n≤k≤m} rsum'(n;m;k.x[k]))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rsum': rsum'(n;m;k.x[k]) req: y real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] stable: Stable{P} uimplies: supposing a not: ¬A prop: or: P ∨ Q implies:  Q squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q false: False label: ...$L... t real: nat_plus: + all: x:A. B[x] decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\}  =  rsum'(n;m;k.x[k]))



Date html generated: 2020_05_20-AM-11_10_23
Last ObjectModification: 2020_01_03-AM-11_17_46

Theory : reals


Home Index