Nuprl Lemma : rsum-triangle-inequality1
∀[n,m:ℤ]. ∀[x,y:{n..m + 1-} ⟶ ℝ].  ((Σ{|x[i]| | n≤i≤m} - Σ{|y[i]| | n≤i≤m}) ≤ Σ{|x[i] + y[i]| | n≤i≤m})
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}, 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
radd: a + b, 
real: ℝ, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
all: ∀x:A. B[x], 
le: A ≤ B, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m], 
implies: P ⇒ Q, 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
squash: ↓T, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rge: x ≥ y
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    ((\mSigma{}\{|x[i]|  |  n\mleq{}i\mleq{}m\}  -  \mSigma{}\{|y[i]|  |  n\mleq{}i\mleq{}m\})  \mleq{}  \mSigma{}\{|x[i]  +  y[i]|  |  n\mleq{}i\mleq{}m\})
 Date html generated: 
2020_05_20-AM-11_13_14
 Last ObjectModification: 
2019_12_15-PM-06_48_55
Theory : reals
Home
Index