Nuprl Lemma : rv-be-inner-trans

a,b,c,d:ℝ^2.  (a_b_d  b_c_d  a_b_c)


Proof




Definitions occuring in Statement :  rv-be: a_b_c real-vec: ^n all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False uall: [x:A]. B[x] prop: rv-be: a_b_c or: P ∨ Q stable: Stable{P} uimplies: supposing a cand: c∧ B uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q rv-between: a-b-c

Latex:
\mforall{}a,b,c,d:\mBbbR{}\^{}2.    (a\_b\_d  {}\mRightarrow{}  b\_c\_d  {}\mRightarrow{}  a\_b\_c)



Date html generated: 2020_05_20-PM-00_55_50
Last ObjectModification: 2020_01_06-PM-00_07_49

Theory : reals


Home Index