Nuprl Lemma : rv-be-inner-trans
∀a,b,c,d:ℝ^2.  (a_b_d 
⇒ b_c_d 
⇒ a_b_c)
Proof
Definitions occuring in Statement : 
rv-be: a_b_c
, 
real-vec: ℝ^n
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rv-be: a_b_c
, 
or: P ∨ Q
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
rv-between: a-b-c
Latex:
\mforall{}a,b,c,d:\mBbbR{}\^{}2.    (a\_b\_d  {}\mRightarrow{}  b\_c\_d  {}\mRightarrow{}  a\_b\_c)
Date html generated:
2020_05_20-PM-00_55_50
Last ObjectModification:
2020_01_06-PM-00_07_49
Theory : reals
Home
Index