Nuprl Lemma : rv-be-symmetry
∀n:ℕ. ∀a,b,c:ℝ^n.  (a_b_c 
⇒ c_b_a)
Proof
Definitions occuring in Statement : 
rv-be: a_b_c
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rv-be: a_b_c
, 
not: ¬A
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
false: False
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
real-vec-sep-symmetry, 
real-vec-sep_wf, 
not_wf, 
rv-between_wf, 
rv-be_wf, 
real-vec_wf, 
nat_wf, 
rv-between-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
introduction, 
independent_functionElimination, 
thin, 
productElimination, 
cut, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
because_Cache, 
voidElimination, 
productEquality, 
isectElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a\_b\_c  {}\mRightarrow{}  c\_b\_a)
Date html generated:
2017_10_03-AM-11_31_58
Last ObjectModification:
2017_08_12-PM-00_07_51
Theory : reals
Home
Index