Nuprl Lemma : rv-be-symmetry

n:ℕ. ∀a,b,c:ℝ^n.  (a_b_c  c_b_a)


Proof




Definitions occuring in Statement :  rv-be: a_b_c real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rv-be: a_b_c not: ¬A member: t ∈ T and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q false: False prop: uall: [x:A]. B[x]
Lemmas referenced :  real-vec-sep-symmetry real-vec-sep_wf not_wf rv-between_wf rv-be_wf real-vec_wf nat_wf rv-between-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution introduction independent_functionElimination thin productElimination cut extract_by_obid dependent_functionElimination hypothesisEquality hypothesis independent_pairFormation because_Cache voidElimination productEquality isectElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a\_b\_c  {}\mRightarrow{}  c\_b\_a)



Date html generated: 2017_10_03-AM-11_31_58
Last ObjectModification: 2017_08_12-PM-00_07_51

Theory : reals


Home Index