Nuprl Lemma : real-vec-sep-symmetry

n:ℕ. ∀a,b:ℝ^n.  (a ≠ ⇐⇒ b ≠ a)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q real-vec-sep: a ≠ b member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  real-vec-sep_wf real-vec_wf nat_wf int-to-real_wf real-vec-dist_wf real_wf rleq_wf rless_functionality req_weakening real-vec-dist-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis natural_numberEquality applyEquality lambdaEquality setElimination rename setEquality sqequalRule because_Cache dependent_functionElimination independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbR{}\^{}n.    (a  \mneq{}  b  \mLeftarrow{}{}\mRightarrow{}  b  \mneq{}  a)



Date html generated: 2016_10_26-AM-10_29_40
Last ObjectModification: 2016_10_04-PM-11_40_13

Theory : reals


Home Index