Nuprl Lemma : real-vec-dist-symmetry

[n:ℕ]. ∀[x,y:ℝ^n].  (d(x;y) d(y;x))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec: ^n req: y nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-dist: d(x;y) real-vec-norm: ||x|| prop: uimplies: supposing a subtype_rel: A ⊆B implies:  Q real-vec-sub: Y real-vec-mul: a*X req-vec: req-vec(n;x;y) all: x:A. B[x] nat: real-vec: ^n rsub: y uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rsqrt_functionality dot-product-nonneg real-vec-sub_wf dot-product_wf rleq_wf int-to-real_wf req_witness real-vec-dist_wf real_wf real-vec_wf nat_wf int_seg_wf req_wf rsub_wf rmul_wf rminus_wf radd_wf req_weakening uiff_transitivity req_functionality req_inversion rminus-as-rmul rminus-radd radd_comm radd_functionality rmul_functionality req_transitivity rminus-rminus real-vec-mul_wf dot-product_functionality dot-product-linearity2 dot-product-comm rmul-assoc rmul-int rmul-one-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality independent_isectElimination applyEquality lambdaEquality setElimination rename setEquality sqequalRule independent_functionElimination isect_memberEquality because_Cache lambdaFormation minusEquality productElimination multiplyEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (d(x;y)  =  d(y;x))



Date html generated: 2016_10_26-AM-10_25_18
Last ObjectModification: 2016_09_14-PM-06_40_19

Theory : reals


Home Index