Nuprl Lemma : dot-product-comm

[n:ℕ]. ∀[x,y:ℝ^n].  (x ⋅ y ⋅ x)


Proof




Definitions occuring in Statement :  dot-product: x ⋅ y real-vec: ^n req: y nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  dot-product: x ⋅ y real-vec: ^n uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than: a < b so_apply: x[s] pointwise-req: x[k] y[k] for k ∈ [n,m]
Lemmas referenced :  nat_wf real_wf rsum_wf req_witness le_wf int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_le_lemma itermConstant_wf itermSubtract_wf intformle_wf rmul_comm int_seg_wf lelt_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties subtract-add-cancel rmul_wf subtract_wf rsum_functionality
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality applyEquality dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache addEquality lambdaFormation independent_functionElimination functionEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (x  \mcdot{}  y  =  y  \mcdot{}  x)



Date html generated: 2016_05_18-AM-09_47_22
Last ObjectModification: 2016_01_17-AM-02_50_43

Theory : reals


Home Index