Nuprl Lemma : rmul-int

[a,b:ℤ].  ((r(a) r(b)) r(a b))


Proof




Definitions occuring in Statement :  req: y rmul: b int-to-real: r(n) uall: [x:A]. B[x] multiply: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q subtype_rel: A ⊆B real: int-to-real: r(n) reg-seq-mul: reg-seq-mul(x;y) bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: all: x:A. B[x] so_lambda: λ2x.t[x] nat_plus: + nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} int_nzero: -o absval: |i| subtract: m
Lemmas referenced :  zero-mul mul-distributes-right add-commutes mul-associates mul-commutes mul-swap minus-one-mul nat_wf nequal_wf div-cancel int_formula_prop_not_lemma intformnot_wf decidable__equal_int int_subtype_base subtype_base_sq bdd-diff_weakening rmul-bdd-diff-reg-seq-mul bdd-diff_functionality equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf itermMultiply_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties nat_plus_properties subtract_wf absval_wf all_wf nat_plus_wf le_wf false_wf reg-seq-mul_wf real_wf req_witness int-to-real_wf rmul_wf req-iff-bdd-diff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis multiplyEquality productElimination independent_isectElimination independent_functionElimination intEquality sqequalRule isect_memberEquality because_Cache applyEquality lambdaEquality setElimination rename dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation divideEquality int_eqEquality dependent_functionElimination voidElimination voidEquality computeAll instantiate unionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b:\mBbbZ{}].    ((r(a)  *  r(b))  =  r(a  *  b))



Date html generated: 2016_05_18-AM-06_51_58
Last ObjectModification: 2016_01_17-AM-01_47_12

Theory : reals


Home Index