Nuprl Lemma : rmul-bdd-diff-reg-seq-mul
∀a,b:ℝ.  bdd-diff(a * b;reg-seq-mul(a;b))
Proof
Definitions occuring in Statement : 
rmul: a * b
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
real: ℝ
, 
bdd-diff: bdd-diff(f;g)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
rmul: a * b
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
real: ℝ
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
guard: {T}
, 
ge: i ≥ j 
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
real-has-value, 
accelerate-bdd-diff, 
canonical-bound_wf, 
imax_wf, 
absval_wf, 
int_upper_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
add_nat_plus, 
imax_nat, 
nat_properties, 
decidable__le, 
intformand_wf, 
intformle_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
istype-le, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
imax_ub, 
reg-seq-mul_wf2, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
callbyvalueReduce, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
inhabitedIsType, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
addEquality, 
applyEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
applyLambdaEquality, 
int_eqEquality, 
independent_pairFormation, 
equalityIstype, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
inlFormation_alt
Latex:
\mforall{}a,b:\mBbbR{}.    bdd-diff(a  *  b;reg-seq-mul(a;b))
Date html generated:
2019_10_16-PM-03_07_01
Last ObjectModification:
2019_02_02-PM-01_41_26
Theory : reals
Home
Index