Nuprl Lemma : rmul-bdd-diff-reg-seq-mul

a,b:ℝ.  bdd-diff(a b;reg-seq-mul(a;b))


Proof




Definitions occuring in Statement :  rmul: b reg-seq-mul: reg-seq-mul(x;y) real: bdd-diff: bdd-diff(f;g) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] rmul: b has-value: (a)↓ uall: [x:A]. B[x] member: t ∈ T implies:  Q nat_plus: + real: int_upper: {i...} decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False subtype_rel: A ⊆B nat: guard: {T} ge: i ≥  and: P ∧ Q uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  real-has-value accelerate-bdd-diff canonical-bound_wf imax_wf absval_wf int_upper_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than add_nat_plus imax_nat nat_properties decidable__le intformand_wf intformle_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma istype-le nat_plus_properties add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf imax_ub reg-seq-mul_wf2 real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule callbyvalueReduce cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination inhabitedIsType setElimination rename dependent_set_memberEquality_alt addEquality applyEquality natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination universeIsType equalityTransitivity equalitySymmetry because_Cache applyLambdaEquality int_eqEquality independent_pairFormation equalityIstype pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination inlFormation_alt

Latex:
\mforall{}a,b:\mBbbR{}.    bdd-diff(a  *  b;reg-seq-mul(a;b))



Date html generated: 2019_10_16-PM-03_07_01
Last ObjectModification: 2019_02_02-PM-01_41_26

Theory : reals


Home Index