Nuprl Lemma : canonical-bound_wf

[r:ℝ]. (canonical-bound(r) ∈ {k:{2...}| ∀n:ℕ+(|r n| ≤ ((2 n) k))} )


Proof




Definitions occuring in Statement :  canonical-bound: canonical-bound(r) real: absval: |i| int_upper: {i...} nat_plus: + uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a multiply: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T real: nat_plus: + guard: {T} int_upper: {i...} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False subtype_rel: A ⊆B nat: int_nzero: -o true: True nequal: a ≠ b ∈  sq_type: SQType(T) ge: i ≥  uiff: uiff(P;Q) and: P ∧ Q canonical-bound: canonical-bound(r) less_than: a < b rev_uimplies: rev_uimplies(P;Q) canon-bnd: canon-bnd(x)
Lemmas referenced :  canon-bnd_wf div_rem_sum absval_wf int_upper_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than subtype_base_sq int_subtype_base nequal_wf rem_bounds_1 add_nat_wf decidable__le intformle_wf int_formula_prop_le_lemma istype-le nat_properties add-is-int-iff intformand_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma false_wf multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma mul_preserves_le nat_plus_subtype_nat nat_plus_wf real_wf nat_plus_properties le_functionality le_weakening
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyLambdaEquality setElimination rename sqequalRule imageMemberEquality baseClosed imageElimination addEquality applyEquality dependent_set_memberEquality_alt natural_numberEquality equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination universeIsType inhabitedIsType lambdaFormation_alt instantiate cumulativity intEquality equalityIstype sqequalBase because_Cache pointwiseFunctionality promote_hyp baseApply closedConclusion productElimination int_eqEquality independent_pairFormation divideEquality multiplyEquality functionIsType

Latex:
\mforall{}[r:\mBbbR{}].  (canonical-bound(r)  \mmember{}  \{k:\{2...\}|  \mforall{}n:\mBbbN{}\msupplus{}.  (|r  n|  \mleq{}  ((2  *  n)  *  k))\}  )



Date html generated: 2019_10_16-PM-03_06_42
Last ObjectModification: 2019_01_31-PM-04_38_30

Theory : reals


Home Index