Nuprl Lemma : le_weakening
∀a,b:ℤ. a ≤ b supposing a = b ∈ ℤ
Proof
Definitions occuring in Statement :
uimplies: b supposing a
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
le: A ≤ B
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
or: P ∨ Q
Lemmas referenced :
le-iff-less-or-equal,
less_than'_wf,
equal_wf,
less_than_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
productElimination,
independent_isectElimination,
sqequalRule,
independent_pairEquality,
lambdaEquality,
voidElimination,
isectElimination,
axiomEquality,
intEquality,
inrFormation
Latex:
\mforall{}a,b:\mBbbZ{}. a \mleq{} b supposing a = b
Date html generated:
2016_05_13-PM-03_30_38
Last ObjectModification:
2015_12_26-AM-09_46_57
Theory : arithmetic
Home
Index