Nuprl Lemma : le-iff-less-or-equal
∀x,y:ℤ.  uiff(x ≤ y;x < y ∨ (x = y ∈ ℤ))
Proof
Definitions occuring in Statement : 
less_than: a < b, 
uiff: uiff(P;Q), 
le: A ≤ B, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
guard: {T}, 
less_than: a < b, 
squash: ↓T, 
cand: A c∧ B, 
sq_type: SQType(T), 
top: Top, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
less_than'_wf, 
le_wf, 
or_wf, 
less_than_wf, 
equal-wf-base, 
int_subtype_base, 
less-trichotomy, 
less_than_irreflexivity, 
less_than_transitivity, 
subtype_base_sq, 
top_wf, 
less_than_anti-reflexive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesis, 
axiomEquality, 
rename, 
intEquality, 
applyEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
imageElimination, 
independent_functionElimination, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
instantiate, 
cumulativity, 
isect_memberEquality, 
voidEquality, 
lessCases, 
axiomSqEquality, 
natural_numberEquality
Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(x  \mleq{}  y;x  <  y  \mvee{}  (x  =  y))
Date html generated:
2019_06_20-AM-11_22_46
Last ObjectModification:
2018_09_10-PM-01_12_31
Theory : arithmetic
Home
Index